
CSCI 5254 - Convex Optimization

Homework 5

Aritra Chakrabarty

November 13, 2024

Problem 6.9

Show that the following problem is quasiconvex:

minimize max
i=1,...,k

∣∣∣∣p(ti)q(ti)
− yi

∣∣∣∣
where

p(t) = a0 + a1t+ a2t
2 + · · ·+ amtm, q(t) = 1 + b1t+ · · ·+ bnt

n,

and the domain of the objective function is defined as

D = {(a, b) ∈ Rm+1 × Rn | q(t) > 0, α ≤ t ≤ β}.

In this problem we fit a rational function p(t)
q(t) to given data, while constraining the denominator polynomial to

be positive on the interval [α, β]. The optimization variables are the numerator and denominator coefficients
ai, bi. The interpolation points ti ∈ [α, β], and desired function values yi, i = 1, . . . , k, are given.

Answer: A function f(x) is quasiconvex when it’s sublevel sets are convex. For every γ ∈ R, the set
{x | f(x) ≤ γ} is convex.
We can denote the objective function as

f(a, b) = max
i=1,...,k

∣∣∣∣p(ti)q(ti)
− yi

∣∣∣∣
To prove the quasiconvexity of this function, we need to show that for γ ≥ 0, the set

sγ = {(a, b) ∈ D | f(a, b) ≤ γ}

is convex.

f(a, b) ≤ γ =⇒
∣∣∣∣p(ti)q(ti)

− yi

∣∣∣∣ ≤ γ

−γ ≤ p(ti)

q(ti)
− yi ≤ γ

yi − γ ≤ p(ti)

q(ti)
≤ yi + γ

1



Given that q(ti) > 0, ∀i = 1, . . . , k, we can multiply the inequality by q(ti) without changing the sign.

yiq(ti)− γq(ti) ≤ p(ti) ≤ yiq(ti) + γq(ti)

Splitting this up into two parts, we get

p(ti)− yiq(ti) ≤ γq(ti) and yiq(ti)− p(ti) ≤ γq(ti)

We know that p(ti) and q(ti) are linear in the coefficients a = (a0, a1, . . . , am) and b = (b1, . . . , bn), so the
above inequalities are linear in a and b.

Thus,
p(ti)− yiq(ti) ≤ γq(ti) =⇒ p(ti)− yiq(ti)− γq(ti) ≤ 0

which is linear in a and b.

Similarly,
−p(ti) + yiq(ti) ≤ γq(ti) =⇒ −p(ti) + yiq(ti)− γq(ti) ≤ 0

which is also linear in a and b.

For a fixed γ, these inequalities are linear constraints on a and b. Linear inequalities define half-spaces,
and the intersection of half-spaces is a convex set. Thus, the set sγ is convex for all γ ≥ 0. Therefore, the
function f(a, b) is quasiconvex for γ ≥ 0.

Additional Exercise 3.9

Complex least-norm problem. We consider the complex least ℓp-norm problem

minimize ∥x∥p

subject to Ax = b

where A ∈ Cm×n, b ∈ Cm, and the variable is x ∈ Cn. Here ∥ · ∥p denotes the ℓp-norm on Cn, defined as

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

for p ≥ 1, and ∥x∥∞ = maxi=1,...,n |xi|. We assume A is full rank, and m < n.

Part (a)

Formulate the complex least ℓ2-norm problem as a least ℓ2-norm problem with real problem data and variable.
Hint: Use z = (ℜx,ℑx) ∈ R2n as the variable.

Answer: Let z ∈ R2n be the represeantation z =

[
ℜx
ℑx

]
, where ℜ(x) ∈ Rn and ℑ(x) ∈ Rn are the real and

imaginary parts of x ∈ Cn.

Let A = ℜ(A) + iℑ(A), where ℜ(A) ∈ Rm×n and ℑ(A) ∈ Rm×n are the real and imaginary parts of
A ∈ Cm×n. Similarly, let b = ℜ(b) + iℑ(b), where ℜ(b) ∈ Rm and ℑ(b) ∈ Rm are the real and imaginary
parts of b ∈ Cm.

2



The complex equation Ax = b can be written as

ℜ(A)ℜ(x)−ℑ(A)ℑ(x) = ℜ(b)

ℜ(A)ℑ(x) + ℑ(A)ℜ(x) = ℑ(b)

In matrix form this is [
ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

] [
ℜ(x)
ℑ(x)

]
=

[
ℜ(b)
ℑ(b)

]
Formulating this as a real least ℓ2-norm problem, we have

minimize ∥z∥2

subject to

[
ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

]
z =

[
ℜ(b)
ℑ(b)

]
where z ∈ R2n is the variable.

Part (b)

Formulate the complex least ℓ∞-norm problem as an SOCP.

Answer: First of all, the ℓ∞-norm is defined as ∥x∥∞ = maxi=1,...,n |xi|, wherre |xi| =
√
ℜ(xi)

2
+ ℑ(xi)

2
.

Let z =

[
ℜx
ℑx

]
=



z1

z2
...

zn
zn+1

zn+2

...
z2n


where zi = ℜ(xi) for i = 1, . . . , n and zn+i = ℑ(xi) for i = 1, . . . , n.

Similar to the previous part, we can write the complex equation Ax = b as[
ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

]
z =

[
ℜ(b)
ℑ(b)

]

We do need an upper bound on the ℓ∞-norm of x. Let t be the upper bound on the ℓ∞-norm of x. Then,
we have √

zi2 + zn+i
2 ≤ t for i = 1, . . . , n

Putting this all together, we have the SOCP

minimize t

subject to

[
ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

]
z =

[
ℜ(b)
ℑ(b)

]
,√

zi2 + zn+i
2 ≤ t for i = 1, . . . , n

3



Part (c)

Solve a random instance of both problems with m = 30 and n = 100. To generate the matrix A, you can use
the Matlab command A = randn(m,n) + i*randn(m,n). Similarly, use b = randn(m,1) + i*randn(m,1)

to generate the vector b. Use the Matlab command scatter to plot the optimal solutions of the two problems
on the complex plane, and comment (briefly) on what you observe. You can solve the problems using the
CVX functions norm(x,2) and norm(x,inf), which are overloaded to handle complex arguments. To utilize
this feature, you will need to declare variables to be complex in the variable statement. (In particular, you
do not have to manually form or solve the SOCP from part (b).)

Answer: We can solve this question with the following Matlab code:

1 % Dimensions

2 m = 30;

3 n = 100;

4
5 % Random complex matrix A and vector b

6 A = randn(m,n) + 1i*randn(m,n);

7 b = randn(m,1) + 1i*randn(m,1);

8
9 % Solve least l2-norm problem

10 cvx_begin

11 variable x_l2(n) complex

12 minimize( norm(x_l2 ,2))

13 subject to

14 A*x_l2 == b;

15 cvx_end

16
17 % Solve least l_inf -norm problem

18 cvx_begin

19 variable x_linf(n) complex

20 minimize( norm(x_linf ,inf))

21 subject to

22 A*x_linf == b;

23 cvx_end

24
25 % Obtain real and imaginary parts of x_l2 and x_linf

26 x_l2_real = real(x_l2);

27 x_l2_imag = imag(x_l2);

28 x_linf_real = real(x_linf);

29 x_linf_imag = imag(x_linf);

30
31 % Scatter Plot

32 figure;

33 hold on;

34 scatter(x_l2_real , x_l2_imag , 'r', 'filled ');
35 scatter(x_linf_real , x_linf_imag , 'b', 'filled ');
36 xlabel('Real part');
37 ylabel('Imaginary part');
38 title('Scatter plot of l2 norm and inf norm solutions ');
39 legend('l2 norm', 'infinity norm');

4



40 axis equal;

41 legend;

42 grid on;

43 hold off;

The image we obtain is:

Interestingly, the ℓ∞-norm solution mostly forms a circle, while the ℓ2-norm solution is more spread out.
This is because the ℓ∞-norm is the maximum of the absolute values of the real and imaginary parts of x,
and hence the solution is a circle, whereas the ℓ2-norm is the square root of the sum of the squares, so the
solution is allowed to be more spread out.

5



Additional Exercise 4.1

Numerical perturbation analysis example. Consider the quadratic program

minimize x2
1 + 2x2

2 − x1x2 − x1

subject to x1 + 2x2 ≤ u1,

x1 − 4x2 ≤ u2,

5x1 + 76x2 ≤ 1

with variables x1, x2, and parameters u1, u2.

Part (a)

Solve this QP, for parameter values u1 = −2, u2 = −3, to find optimal primal variable values x⋆
1 and x⋆

2, and
optimal dual variable values λ⋆

1, λ
⋆
2 and λ⋆

3. Let p
⋆ denote the optimal objective value. Verify that the KKT

conditions hold for the optimal primal and dual variables you found (within reasonable numerical accuracy).
Matlab hint: See §3.7 of the CVX users’ guide to find out how to retrieve optimal dual variables. To specify
the quadratic objective, use quad form().

Answer: The given objective function f(x) = x2
1 + 2x2

2 − x1x2 − x1 can be written in the quadratic form
f(x) = 1

2x
TPx+ qTx+ r, where

P =

[
2 −1
−1 4

]
, q =

[
−1
0

]
, r = 0

However, due to the way CVX works, the quadratic form actually used doesn’t include the factor of 1
2 , so

we will use the following quadratic form in CVX:

f(x) = xTPx+ qTx+ r

This makes P =

[
1 −1

2−1
2 2

]
, q =

[
−1
0

]
, and r = 0.

The constraints can be written as Ax ≤ b, where

A =

1 2
1 −4
5 76

 , b =

−2
−3
1


We can solve this QP using CVX in Matlab as follows:

1 % Defining objective function and constraints in Matrix form

2 Q = [1 -1/2; -1/2 2];

3 %f = [-1; 0]; % cvx needs a rowvector

4 f = [-1 0];

5 A = [1 2; 1 -4; 5 76];

6 b = [-2; -3; 1];

7
8 % Solving the problem using cvx quad_form

6



9 cvx_begin

10 variable x(2)

11 dual variable lambda

12 minimize(quad_form(x, Q) + f * x)

13 subject to

14 lambda: A*x <= b

15 cvx_end

16
17 p_star = cvx_optval;

18
19 % Displaying the results

20 disp('Optimal value of x:')
21 disp(x)

22
23 disp('Optimal value of the objective function:')
24 disp(cvx_optval)

25
26 disp('Optimal value of the dual variable:')
27 disp(lambda)

28
29 % Verifying KKT conditions

30 % Primal Feasibility A*x <= b

31 primal_feasibility = A*x;

32 if all(primal_feasibility <= b + 1e-6)

33 disp('Primal Feasibility: Satisfied ')
34 else

35 disp('Primal Feasibility: Not Satisfied ')
36 disp(primal_feasibility)

37 end

38
39 % Dual Feasibility lambda >= 0

40 dual_feasibility = lambda;

41 if all(dual_feasibility >= 0 - 1e-6)

42 disp('Dual Feasibility: Satisfied ')
43 else

44 disp('Dual Feasibility: Not Satisfied ')
45 disp(dual_feasibility)

46 end

47
48 % Complementary Slackness lambda_i * (A*x - b)_i = 0

49 slack = A * x - b; % this needs to be leq 0

50 complementary_slackness = lambda .* slack;

51 if all(abs(complementary_slackness) <= 1e-6)

52 disp('Complementary Slackness: Satisfied ')
53 else

54 disp('Complementary Slackness: Not Satisfied ')
55 disp(complementary_slackness)

56 end

57
58 % Stationarity Q*x + f + A'* lambda = 0

59 % 2 is needed because of the way cvx handles the problem

7



60 stationarity = 2*Q*x + f' + A'* lambda;
61 if all(abs(stationarity) <= 1e-4)

62 disp('Stationarity: Satisfied ')
63 else

64 disp('Stationarity: Not Satisfied ')
65 disp(stationarity)

66 end

The output we obtain is:

------------------------------------------------------------

Status: Solved

Optimal value (cvx_optval): +8.22222

Optimal value of x:

-2.3333

0.1667

Optimal value of the objective function:

8.2222

Optimal value of the dual variable:

1.8994

3.4684

0.0931

Primal Feasibility: Satisfied

Dual Feasibility: Satisfied

Complementary Slackness: Satisfied

Stationarity: Satisfied

The optimal primal variable values are x⋆
1 = −2.3333 and x⋆

2 = 0.1667, and the optimal dual variable values
are λ⋆

1 = 1.8994, λ⋆
2 = 3.4684, and λ⋆

3 = 0.0931. The optimal objective value is p⋆ = 8.2222.

We also see that all the KKT conditions are satsified via the code.

• Primal Feasibility: Ax ≤ b is satisfied.

• Dual Feasibility: λ ≥ 0 is satisfied.

• Complementary Slackness: λi(Aix− bi) = 0 is satisfied.

• Stationarity: 2Qx+ f⊤ +A⊤λ = 0 is satisfied.

Part (b)

We will now solve some perturbed versions of the QP, with

u1 = −2 + δ1, u2 = −3 + δ2,

8



where δ1 and δ2 each take values from {−0.1, 0, 0.1}. (There are a total of nine such combinations, including
the original problem with δ1 = δ2 = 0.) For each combination of δ1 and δ2, make a prediction p⋆pred of the
optimal value of the perturbed QP, and compare it to p⋆exact, the exact optimal value of the perturbed QP
(obtained by solving the perturbed QP). Put your results in the two righthand columns in a table with the
form shown below. Check that the inequality p⋆pred ≤ p⋆exact holds.

δ1 δ2 p⋆pred p⋆exact
0 0
0 −0.1
0 0.1

−0.1 0
−0.1 −0.1
−0.1 0.1
0.1 0
0.1 −0.1
0.1 0.1

Answer: We can solve the perturbed QP using CVX in Matlab as follows:

1 % -------------------- Part b --------------------%

2 delta_values = [-0.1, 0, 0.1];

3 num_cases = length(delta_values)^2;

4 results = zeros(num_cases , 4); % 4 columns: delta1 , delta2 , p_pred ,

p_exact

5 count = 1;

6
7 for delta1 = delta_values

8 for delta2 = delta_values

9 % Perturbed b

10 delta = [delta1; delta2; 0];

11 b_perturbed = b + delta;

12
13 % Find predicted optimal value

14 % lambda is subtracted because increasing b will decrease the

optimal value

15 p_pred = p_star - lambda (1:2)' * delta (1:2);

16
17 % Solve the problem with perturbed b

18 cvx_begin quiet

19 variable x(2)

20 minimize(quad_form(x, Q) + f * x)

21 subject to

22 A*x <= b_perturbed

23 cvx_end

24 p_exact = cvx_optval;

25
26 % Store the results

27 results(count , :) = [delta1 , delta2 , p_pred , p_exact ];

28 count = count + 1;

29 end

9



30 end

31
32 % Display results in a table

33 Tab = array2table(results , 'VariableNames ', {'delta1 ', 'delta2 ', 'p_pred ',
'p_exact '});

34 disp(Tab)

The output we obtain is:

delta1 delta2 p_pred p_exact

______ ______ ______ _______

-0.1 -0.1 8.759 8.8156

-0.1 0 8.4122 8.565

-0.1 0.1 8.0653 8.3189

0 -0.1 8.5691 8.7064

0 0 8.2222 8.2222

0 0.1 7.8754 7.98

0.1 -0.1 8.3791 8.7064

0.1 0 8.0323 8.2222

0.1 0.1 7.6854 7.7515

Putting this into the tabular format requested, we get:

δ1 δ2 p⋆pred p⋆exact
0 0 8.2222 8.2222
0 −0.1 8.5691 8.7064
0 0.1 7.8754 7.98

−0.1 0 8.4122 8.565
−0.1 −0.1 8.759 8.8156
−0.1 0.1 8.0653 8.3189
0.1 0 8.0323 8.2222
0.1 −0.1 8.3791 8.7064
0.1 0.1 7.6854 7.7515

At a quick glance, we can see that p⋆pred ≤ p⋆exact for all the cases.

Additional Exercise 5.2

Minimax rational fit to the exponential. (See exercise 6.9 of Convex Optimization.) We consider the specific
problem instance with data

ti = −3 + 6(i− 1)/(k − 1), yi = eti , i = 1, . . . , k,

where k = 201. (In other words, the data are obtained by uniformly sampling the exponential function over
the interval [−3, 3].) Find a function of the form

f(t) =
a0 + a1t+ a2t

2

1 + b1t+ b2t2

10



that minimizes maxi=1,...,k |f(ti)− yi|. (We require that 1 + b1ti + b2t
2
i > 0 for i = 1, . . . , k.)

Find optimal values of a0, a1, a2, b1, b2, and give the optimal objective value, computed to an accuracy of
0.001. Plot the data and the optimal rational function fit on the same plot. On a different plot, give the
fitting error, i.e., f(ti)− yi.

Hint. You can use strcmp(cvx status, ‘Solved’), after cvx end, to check if a feasibility problem is
feasible.

Answer: The goal of this problem is to minimise the maximum error between f(ti) and yi = eti over
k = 201 data points ti in the interval [−3, 3].

For each data point ti, we have |f(ti)− yi| ≤ E where E is the error. Similar to exercise 6.9, we end up with

−E ≤ p(ti)

q(ti)
≤ E

where p(ti) = a0 + a1ti + a2t
2
i and q(ti) = 1 + b1ti + b2t

2
i .

We can rewrite this as two inequalities:

p(ti)− yiq(ti)− Eq(ti) ≤ 0 and − p(ti) + yiq(ti)− Eq(ti) ≤ 0

To find the minimal E such that the above inequalities hold ∀i, notice that for a fixed E, the constraints
become linear and thus convex in the variables a0, a1, a2, b1, b2 (because we don’t multiply a variable E
with a bunch of variables in q(ti)). This quasiconvex structure allows us to employ the bisection method to
efficiently search for the smallest feasible E. Therefore, we convert this to a feasibility problem.

We let pi = p(ti) and qi = q(ti) for simplicity.

The feasibility problem, put altogether, is:

find a0, a1, a2, b1, b2

subject to pi = a0 + a1ti + a2t
2
i

qi = 1 + b1ti + b2t
2
i

qi > 0

pi − yiqi − Eqi ≤ 0

− pi + yiqi − Eqi ≤ 0

We can use MATLAB to solve this problem. The code is as follows:

1 % Generate data

2 k = 201;

3 t = linspace(-3, 3, k) ';
4 y = exp(t);

5
6 % Set bisection parameters and initial bounds

7 E_lower = 0;

8 E_upper = max(y); % the error cannot be larger than the maximum value of y

9 tol = 1e-3;

10

11



11 % Variables to store optimal solution

12 opt_a = [];

13 opt_b = [];

14 E_opt = E_upper; % Initialize with upper bound as we work our way down

15
16 % Bisection loop

17 while (E_upper - E_lower) > tol

18 E = (E_upper + E_lower) / 2; % Bisection to obtain midpoint

19
20 cvx_begin quiet

21 variables a0 a1 a2 b1 b2 p(k) q(k)

22 epsilon = 1e-6;

23 q >= epsilon;

24 p == a0 + a1 * t + a2 * t.^2;

25 q == 1 + b1 * t + b2 * t.^2;

26 % Constraints

27 p - y .* q - E * q <= 0;

28 -p + y .* q - E * q <= 0;

29 cvx_end

30
31 if strcmp(cvx_status , 'Solved ')
32 % Update upper bound for this feasible solution to error

33 E_upper = E; % if problem is feasible at E, this means we have the

coefficients that achieve a maximum error less than or equal

to previous E_upper

34 E_opt = E;

35 opt_a = [a0; a1; a2];

36 opt_b = [b1; b2];

37 else

38 % If not possible , update lower bound

39 E_lower = E; % if problem is infeasible at E, this means no

coefficients can achieve a maximum error less than or equal to

E

40 end

41 end

42
43 % Display optimal solution

44 disp('Optimal a coefficients:');
45 disp(opt_a);

46 disp('Optimal b coefficients:');
47 disp(opt_b);

48 disp('Optimal error:');
49 disp(E_opt);

50
51 % Compute fitted values

52 f_t = (opt_a (1) + opt_a (2) * t + opt_a (3) * t.^2) ./ (1 + opt_b (1) * t +

opt_b (2) * t.^2);

53
54 % Plotting

55 figure;

56 plot(t, y, 'b', 'LineWidth ', 2); hold on;

12



57 plot(t, f_t , 'r--', 'LineWidth ', 2);

58 xlabel('t');
59 ylabel('Function value ');
60 legend('Data (e^{t})', 'Rational fit f(t)');
61 title('Data and Optimal Rational Function Fit');
62
63 figure;

64 plot(t, f_t - y, 'k', 'LineWidth ', 2);

65 xlabel('t');
66 ylabel('Fitting error f(t) - y');
67 title('Fitting Error');

The optimal values of a0, a1, a2, b1, b2 and E are:

a0 = 1.0098, a1 = 0.6119, a2 = 0.1135, b1 = −0.4146, b2 = 0.0485, E = 0.0233

The figures generated by the code are shown below.

13



Additional Exercise 5.6

Total variation image interpolation. A grayscale image is represented as an m×n matrix of intensities Uorig.
You are given the values Uorig

ij for (i, j) ∈ K, where K ⊂ {1, . . . ,m} × {1, . . . , n}. Your job is to interpolate

the image, by guessing the missing values. The reconstructed image will be represented by U ∈ Rm×n, where
U satisfies the interpolation conditions Uij = Uorig

ij for (i, j) ∈ K.

The reconstruction is found by minimizing a roughness measure subject to the interpolation conditions. One
common roughness measure is the ℓ2 variation (squared),

m∑
i=2

n∑
j=1

(Uij − Ui−1,j)
2 +

m∑
i=1

n∑
j=2

(Uij − Ui,j−1)
2

Another method minimizes instead the total variation,

m∑
i=2

n∑
j=1

|Uij − Ui−1,j |+
m∑
i=1

n∑
j=2

|Uij − Ui,j−1|

Evidently both methods lead to convex optimization problems.

Carry out ℓ2 and total variation interpolation on the problem instance with data given in tv img interp.m.

14



This will define m, n, and matrices Uorig and Known. The matrix Known is m × n, with (i, j) entry one if
(i, j) ∈ K, and zero otherwise. The mfile also has skeleton plotting code. (We give you the entire original

image so you can compare your reconstruction to the original; obviously your solution cannot access Uorig
ij

for (i, j) /∈ K.)

Answer: This problem mostly involves programming, but we can set up a quick example of an optimization
problem using ℓ2 variation.

minimize
U

m∑
i=2

n∑
j=1

(Uij − Ui−1,j)
2 +

m∑
i=1

n∑
j=2

(Uij − Ui,j−1)
2

subject to Uij = Uorig
ij ∀(i, j) ∈ K

The MATLAB code using the skeleton code provided is as follows:

1 % tv_img_interp.m

2 % Total variation image interpolation.

3 % Defines m, n, Uorig , Known.

4
5 % Load original image.

6 Uorig = double(imread('tv_img_interp.png'));
7
8 [m, n] = size(Uorig);

9
10 % Create 50% mask of known pixels.

11 rand('state ', 1029);

12 Known = rand(m,n) > 0.5;

13
14 %%%%% Put your solution code here

15
16 % Calculate and define Ul2 and Utv

17
18 % L2 variation interpolation

19 cvx_begin

20 variable Ul2(m, n)

21 minimize( sum(sum((Ul2(2:m, :) - Ul2(1:m-1, :)).^2)) + sum(sum((Ul2(:,

2:n) - Ul2(:, 1:n-1)).^2)) )

22 subject to

23 Ul2(Known) == Uorig(Known);

24 cvx_end

25
26 % Total variation interpolation

27 cvx_begin

28 variable Utv(m, n)

29 minimize( sum(sum(abs(Utv(2:m, :) - Utv(1:m-1, :)))) + sum(sum(abs(Utv

(:, 2:n) - Utv(:, 1:n-1)))) )

30 subject to

31 Utv(Known) == Uorig(Known);

32 cvx_end

33

15



34 %%%%%

35
36
37 % Placeholder:

38 %Ul2 = ones(m, n);

39 %Utv = ones(m, n);

40
41 %%%%%

42
43 % Graph everything.

44 figure (1); cla;

45 colormap gray;

46
47 subplot (221);

48 imagesc(Uorig)

49 title('Original image ');
50 axis image;

51
52 subplot (222);

53 imagesc(Known.* Uorig + 256 -150* Known);

54 title('Obscured image ');
55 axis image;

56
57 subplot (223);

58 imagesc(Ul2);

59 title('l_2 reconstructed image');
60 axis image;

61
62 subplot (224);

63 imagesc(Utv);

64 title('Total variation reconstructed image ');
65 axis image;

The figure generated by the code is shown below.

16



Additional Exercise 5.13

Fitting with censored data. In some experiments there are two kinds of measurements or data available: The
usual ones, in which you get a number (say), and censored data, in which you don’t get the specific number,
but are told something about it, such as a lower bound. A classic example is a study of lifetimes of a set of
subjects (say, laboratory mice). For those who have died by the end of data collection, we get the lifetime.
For those who have not died by the end of data collection, we do not have the lifetime, but we do have a
lower bound, i.e., the length of the study. These are the censored data values.

We wish to fit a set of data points,
(x(1), y(1)), . . . , (x(K), y(K))

with x(k) ∈ Rn and y(k) ∈ R, with a linear model of the form y ≈ c⊤x. The vector c ∈ Rn is the model
parameter, which we want to choose. We will use a least-squares criterion, i.e., choose c to minimize

J =

K∑
k=1

(
y(k) − c⊤x(k)

)2
Here is the tricky part: some of the values of y(k) are censored; for these entries, we have only a (given) lower
bound. We will re-order the data so that y(1), . . . , y(M) are given (i.e., uncensored), while y(M+1), . . . , y(K)

are all censored, i.e., unknown, but larger than D, a given number. All the values of x(k) are known.

17



Part (a)

Explain how to find c (the model parameter) and y(M+1), . . . , y(K) (the censored data values) that minimize
J .

Answer: Since our goal here is to fit a linear model y ≈ c⊤x to the data, we can write the least-squares
criterion as

J =

K∑
k=1

(
y(k) − c⊤x(k)

)2
However, since we have censored data points beyond M , we can modify the objective function to account
for this. Separating out the censored data points, we cna then add a constraint that they should be at least
D.

Let’s denote a letter, say z ∈ RK−M , to represent the censored data points. Then, we can write the objective
function as

J =

M∑
k=1

(
y(k) − c⊤x(k)

)2
+

K∑
k=M+1

(
z(k−M) − c⊤x(k)

)2
where the second part handles the censored points with the constraint z(k−M) ≥ D.

Combining this, we get the quadratic program

minimize
c, z

M∑
k=1

(
y(k) − c⊤x(k)

)2
+

K∑
k=M+1

(
z(k−M) − c⊤x(k)

)2
subject to z(k−M) ≥ D ∀k = M + 1, . . . ,K

Part (b)

Carry out the method of part (a) on the data values in cens fit data.m. Report ĉ, the value of c found
using this method.

Also find ĉls, the least-squares estimate of c obtained by simply ignoring the censored data samples, i.e., the
least-squares estimate based on the data

(x(1), y(1)), . . . , (x(M), y(M)).

The data file contains ctrue, the true value of c, in the vector c true. Use this to give the two relative errors

∥ctrue − ĉ∥2
∥ctrue∥2

,
∥ctrue − ĉls∥2

∥ctrue∥2
.

Answer: The MATLAB code using the skeleton code provided is as follows:

1 % data for censored fitting problem.

2 randn('state ' ,0);
3
4 n = 20; % dimension of x's

18



5 M = 25; % number of non -censored data points

6 K = 100; % total number of points

7 c_true = randn(n,1);

8 X = randn(n,K);

9 y = X'* c_true + 0.1*( sqrt(n))*randn(K,1);

10
11 % Reorder measurements , then censor

12 [y, sort_ind] = sort(y);

13 X = X(:,sort_ind);

14 D = (y(M)+y(M+1))/2;

15 y = y(1:M);

16
17 % ---------------------------------------------

18 % Solution

19 % ---------------------------------------------

20
21 % Separate uncensored and censored data

22 X_uncensored = X(:, 1:M); % (n x M)

23 X_censored = X(:, M+1:K); % (n x (K - M))

24
25 % Number of censored data points

26 num_censored = K - M;

27
28 cvx_begin

29 variables c(n) z(num_censored) % minimize over c and z because we don '
t know censored data

30 minimize( sum_square(y - X_uncensored ' * c) + sum_square(z -

X_censored ' * c) )

31 subject to

32 z >= D

33 cvx_end

34 % Assign the estimated c to c_hat

35 c_hat = c;

36
37 % Least squares method

38 cvx_begin

39 variable c(n) % we only work with the uncensored data

40 minimize( sum_square(y - X_uncensored ' * c) )

41 cvx_end

42 % Assign the estimated c to c_ls

43 c_ls_hat = c;

44
45 % Display the results

46 disp('True , Estimated , and Least -Squares Estimates of c:');
47 disp([ c_true c_hat c_ls_hat ]);

48
49 % Compute relative errors

50 c_hat_relerr = norm(c_hat - c_true) / norm(c_true);

51 c_ls_relerr = norm(c_ls_hat - c_true) / norm(c_true);

52
53 % Display the relative errors

19



54 fprintf('Relative Error for c_hat: %.4f\n', c_hat_relerr);

55 fprintf('Relative Error for c_ls_hat: %.4f\n', c_ls_relerr);

The output obtained from running the script is as follows:

True, Estimated, and Least-Squares Estimates of c:

-0.4326 -0.2946 -0.3476

-1.6656 -1.7541 -1.7955

0.1253 0.2589 0.2000

0.2877 0.2241 0.1672

-1.1465 -0.9917 -0.8357

1.1909 1.3017 1.3005

1.1892 1.4262 1.8276

-0.0376 -0.1554 -0.5612

0.3273 0.3785 0.3686

0.1746 0.2261 -0.0454

-0.1867 -0.0826 -0.1096

0.7258 1.0427 1.5265

-0.5883 -0.4648 -0.4980

2.1832 2.1942 2.4164

-0.1364 -0.3586 -0.5563

0.1139 -0.1973 -0.3701

1.0668 1.0194 0.9900

0.0593 -0.1186 -0.2539

-0.0956 -0.1211 -0.1762

-0.8323 -0.7523 -0.4349

Relative Error for c_hat: 0.1784

Relative Error for c_ls_hat: 0.3907

The relative error for ĉ is 0.1784 and for ĉls is 0.3907. The output also has a table showing the ctrue, ĉ, and
ĉls values.

Additional Exercise 5.15

Learning a quadratic pseudo-metric from distance measurements. We are given a set of N pairs of points in
Rn, x1, . . . , xN , and y1, . . . , yN , together with a set of distances d1, . . . , dN > 0.

The goal is to find (or estimate or learn) a quadratic pseudo-metric d,

d(x, y) =
(
(x− y)⊤P (x− y)

)1/2
,

with P ∈ Sn+, which approximates the given distances, i.e., d(xi, yi) ≈ di. (The pseudo-metric d is a metric
only when P ≻ 0; when P ⪰ 0 is singular, it is a pseudo-metric.)

20



To do this, we will choose P ∈ Sn+ that minimizes the mean squared error objective

1

N

N∑
i=1

(di − d(xi, yi))
2.

Part (a)

Explain how to find P using convex or quasiconvex optimization. If you cannot find an exact formulation (i.e.,
one that is guaranteed to minimize the total squared error objective), give a formulation that approximately
minimizes the given objective, subject to the constraints.

Answer: We cna show that this is a convex problem in P given P ∈ Sn+.

Let’s take the (di −
√
(xi − yi)⊤P (xi − yi))

2 term and expand it out:

(di −
√
(xi − yi)⊤P (xi − yi))

2 = d2i − 2di

√
(xi − yi)⊤P (xi − yi) + (xi − yi)

⊤P (xi − yi)

With respect to P , d2i is a constant term.

The term (xi − yi)
⊤P (xi − yi) is linear because if we were to take the trace of the expression, we would get

tr((xi − yi)P (xi − yi)
⊤) which is linear in P . (This is (xi − yi)

⊤(xi − yi) is a constant matrix and P is linear
in the trace operator.)

Finally, the term −2 · di
√

(xi − yi)⊤P (xi − yi) is convex. This is because we have a linear or affine function

inside a square root which is a concave function. The total term di
√

(xi − yi)⊤P (xi − yi) is concave because
an affine function does not change the concavity of a function. Finally, the negative sign flips the concavity
of the function, making it convex.

Overall then, we have shown that a constant, a linear term, and a convex term are all present in the objective
function. This means that the objective function is convex in P .

So, we can set up the optimization problem as

minimize
P

1

N

N∑
i=1

(di −
√
(xi − yi)⊤P (xi − yi))

2

subject to P ≥ 0

One thing to note is that since P is constrained to be a symmetric positive semidefinite matrix, the problem
is a semidefinite program.

Part (b)

Carry out the method of part (a) with the data given in quad metric data.m. The columns of the matrices
X and Y are the points xi and yi; the row vector d gives the distances di. Give the optimal mean squared
distance error.

21



We also provide a test set, with data X test, Y test, and d test. Report the mean squared distance error
on the test set (using the metric found using the data set above).

Answer: This problem can be set up in MATLAB as stated above. The code is as follows:

1 %% data for learning a quadratic metric

2 % provides X, Y, d, X_test , Y_test , d_test

3 cvx_clear;

4 rand('seed' ,0);
5 randn('seed' ,0);
6 n = 5; % dimension

7 N = 100; % number of distance samples

8 N_test = 10;

9
10 X = randn(n,N);

11 Y = randn(n,N);

12 X_test = randn(n,N_test);

13 Y_test = randn(n,N_test);

14
15 P =randn(n,n);

16 P = P*P'+eye(n);
17 sqrtP = sqrtm(P);

18
19 d = norms(sqrtP *(X-Y)); % exact distances

20 d = pos(d+randn(1,N)); % add noise and make nonnegative

21 d_test = norms(sqrtP *(X_test -Y_test));

22 d_test = pos(d_test+randn(1,N_test));

23
24 clear P sqrtP;

25
26 % Compute difference vectors for training and test data

27 Diff = X - Y; % Training data

28 Diff_test = X_test - Y_test; % Test data

29
30 % Solve optimization problem

31 cvx_begin SDP

32 variable P(n, n) symmetric

33 expression f

34 f = 0;

35 for i = 1:N

36 f = f + (d(i)^2) - 2 * d(i) * sqrt(quad_form(Diff(:, i), P)) +

quad_form(Diff(:, i), P);

37 end

38 minimize (f / N)

39 subject to

40 P >= 0; % Enforce P is positive semidefinite

41 cvx_end

42
43 % Mean squared distance error on training data

44 % Compute (P * Diff) which results in an n x N matrix

45 % Element -wise multiply by Diff to get element -wise products

22



46 % Sum over rows to get a 1 x N vector of quadratic forms

47 % Take square roots to get the estimated distances

48 d_hat_train = sqrt(sum((P * Diff) .* Diff , 1)) ';
49
50 % Mean squared distance error on test data

51 d_hat_test = sqrt(sum((P * Diff_test) .* Diff_test , 1)) ';
52
53 % Compute Mean Squared Errors

54 MSE_train = mean((d' - d_hat_train).^2);

55 MSE_test = mean((d_test ' - d_hat_test).^2);

56
57 % Report

58 disp('MSE on training data:');
59 disp(MSE_train);

60 disp('MSE on test data:');
61 disp(MSE_test);

The output of the code is as follows:

MSE on training data:

0.886688

MSE on test data:

0.826620

The mean squared error on the training data is 0.886688 and the mean squared error on the test data is
0.826620.

23


