
CSCI 5622 - Homework 2
Aritra Chakrabarty

March 13, 2024

1 Library and data import
The first step is to import all the necessary libraries for usage throughout this assignment.

[]: # Importing all necessary libraries into notebook
import pandas as pd
import numpy as np
import statistics as stat
import seaborn as sns
import sklearn
import matplotlib.pyplot as plt

Since I am having some issues directly reading the csv using pandas, related to UTF-8, I decided
to check the encoding of the .csv first.

NOTE: The .csv file was updated and the chardet portion as show below is no longer necessary,
but I am keeping it in here for use in future homework assignments.

File importing works perfectly fine now.

[]: import chardet
with open('hw-2.csv','rb') as file:

print(chardet.detect(file.read(512)))
file.close()
#limit the number of bytes being read
#do not want to go through all 22 MB of data

{'encoding': 'ascii', 'confidence': 1.0, 'language': ''}

We import the .csv file below, and display the columns to ensure they match the provided instruc-
tions.

[]: # Import the .csv file for usage
df = pd.read_csv("hw-2.csv")
#Due to the data not being in UTF-8 format, we have to use IS0-8859-1 - No␣

↪longer the case
df.columns

[]: Index(['Depthm', 'Salnty', 'O2ml_L', 'STheta', 'O2Sat', 'Oxymol', 'ChlorA',
'Phaeop', 'PO4uM', 'SiO3uM', 'NO2uM', 'NH3uM', 'C14As1', 'C14As2',

1

'DarkAs', 'LightP', 'Year'],
dtype='object')

2 Data Exploration 1
Plot 2-D scatter plots and compute the Pearson’s correlation coefficient between features and the
outcome. Which features are the most predictive of salinity level?

2.1 Plotting all Features and Correlations
Since there are a total of 16 features exculding Salinity, we can plot a basic grid of scatterplots
using the seaborn library. The cell below uses a seaborn theme for plot representation, and uses
subplot form matplotlib to get an organized output with the plots in a grid.

[]: plt.style.use('seaborn-v0_8')

numsubplots = 16
figcols = 4
figrows = int(np.ceil(numsubplots/figcols))
fig, axes = plt.subplots(nrows=figrows, ncols=figcols, figsize=(20,20))

plotnumber = 0
for column in df.columns:

if column!='Salnty':
row, col = divmod(plotnumber, figcols)
ax = axes[row, col]
sns.scatterplot(x=df['Salnty'], y=df[column], ax=ax)
ax.tick_params(axis='x')
plotnumber += 1

plt.tight_layout()

2

To get a better idea of the correlations, we use pearson’s correlation to obtain how each feature
relates to Salinity. Pandas has a function to make a correlation matrix, which we use to obtain
each correlation, linked below.

pandas.DataFrame.corr

[]: #Pearson correlation
for column in df.columns:

if column != 'Salnty':
pearson_matrix = df[['Salnty', column]].corr(method='pearson')␣

↪#relating salnty to other cols
correlation_value = pearson_matrix.loc['Salnty', column]

3

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.corr.html

print(f"Correlation between 'Salnty' and '{column}':␣
↪{correlation_value}")

Correlation between 'Salnty' and 'Depthm': 0.7150357558238011
Correlation between 'Salnty' and 'O2ml_L': -0.9137646831628342
Correlation between 'Salnty' and 'STheta': 0.6136725558411762
Correlation between 'Salnty' and 'O2Sat': -0.9034429826802403
Correlation between 'Salnty' and 'Oxymol': -0.9140322469454201
Correlation between 'Salnty' and 'ChlorA': -0.06713344927597674
Correlation between 'Salnty' and 'Phaeop': -0.04622498395677666
Correlation between 'Salnty' and 'PO4uM': 0.8975988894062825
Correlation between 'Salnty' and 'SiO3uM': 0.8654148732234828
Correlation between 'Salnty' and 'NO2uM': -0.19566336662153697
Correlation between 'Salnty' and 'NH3uM': -0.1187469917425513
Correlation between 'Salnty' and 'C14As1': 0.19751420081486085
Correlation between 'Salnty' and 'C14As2': 0.18596024631363084
Correlation between 'Salnty' and 'DarkAs': 0.1413377429200838
Correlation between 'Salnty' and 'LightP': -0.028925799637096145
Correlation between 'Salnty' and 'Year': -0.028696586774554448

2.2 High Correlation Features against Salinity
Pearson correlation coefficient is said to be strong if the value lies between ±0.5 and ±1. It is of a
moderate correlation when the values are between ±0.3 and ±0.5. So, we should only make use of
the values that indicate a strong correlation.

Different sources mention different cutoff ranges for what is considered to be strong correleation.

Therefore, the cell below uses a cutoff range to determine the features which are most correleated
to Salinity.

[]: #cutoff range
pm_range = 0.5

#make a new correlation matrix
corr_mat = df.corr(method='pearson')
salnty_correlations = corr_mat['Salnty'].drop('Salnty') #there is no need to␣

↪compare salnty with itself

#keep only the correlations that are within the absolute range
high_salnty_correlations = salnty_correlations[abs(salnty_correlations) >␣

↪pm_range]

#unwrap the pandas dataframe and reset to only keep correlation to salinity
high_salnty_correlations = high_salnty_correlations.reset_index().

↪rename(columns={'index': 'Feature', 'Salnty': 'Correlation'})

print(high_salnty_correlations)

4

Feature Correlation
0 Depthm 0.715036
1 O2ml_L -0.913765
2 STheta 0.613673
3 O2Sat -0.903443
4 Oxymol -0.914032
5 PO4uM 0.897599
6 SiO3uM 0.865415

We keep the high_salnty_correlations array in memory for usage in future sections to improve
performance.

3 Data Exploration 2
Compute matrix 𝐶 ∈ ℝ𝟙𝟞×𝟙𝟞 that contains the Pearson’s correlation coefficients between all pairs of
features. Visualise the matrix 𝐶 using a heatmap. Which features are the most correlated to each
other?

3.1 Heatmap for all features
Seaborn has in-built heatmaps which can take an input of the correlation matrix, and provides a
well-formatted and easily digestable output. The doumentation for it is linked below. Mentioning
the vmin, vmax, and center helps us get an organized color scheme to help understand the relations
well.

seaborn.heatmap

[]: #Used resources:
#https://www.geeksforgeeks.org/how-to-create-a-correlation-matrix-using-pandas/

df2 = df.drop(columns='Salnty', axis=1) #remove salinity as we are considering␣
↪multicolinearity

correlation_matrix = df2.corr(method='pearson')

plt.style.use('seaborn-v0_8')
plt.figure(figsize=(18,15))
sns.heatmap(correlation_matrix, annot=True, linewidth=.5, vmin=-1, vmax=1,␣

↪center=0)
plt.show()

5

https://seaborn.pydata.org/generated/seaborn.heatmap.html

3.2 High Multicollinearity between features
Very strong correlation between features can cause multiple issues in a linear regression model that
we are trying to build in the upcoming sections due to the following reasons:

• Redundancy: Strong correlation could mean that by having two similar features, we are
providing redundant data, that can not only slow down the performance, it can also interfere
with the weights as we could be “double counting” them.

• Instability: The wn values in the model that we form could be biased towards certain features.

• Overfitting: Some overfitting can occur if we are essentially double counting certain features.

So, we should have a list of features with high multicolinearity in order to remove them for future
usage.

[]: #list of all high correlation features
def show_unique_high_correlations(correlation_matrix, range):

6

#unstack corr matrix and reset index to make a new dataframe giving feature␣
↪pairs w correlation

correlation_pairs = correlation_matrix.unstack().reset_index()
correlation_pairs.columns = ['FeatureA', 'FeatureB', 'Correlation']

#keep only pairs with absolute values higher than range, then exclude all␣
↪self correlations

filtered_pairs = correlation_pairs[((correlation_pairs['Correlation'].abs()␣
↪> range)

& (correlation_pairs['FeatureA'] !=␣
↪correlation_pairs['FeatureB']))]

#keep only one direction, to remove repeated duplicates
filtered_pairs_no_duplicates = filtered_pairs[filtered_pairs['FeatureA'] <␣

↪filtered_pairs['FeatureB']]

#sort by the first column just to make the output look a bit more␣
↪organised, and print

unique_pairs = filtered_pairs_no_duplicates.sort_values(by='FeatureA')
print(unique_pairs)

[]: show_unique_high_correlations(correlation_matrix, pm_range)

FeatureA FeatureB Correlation
181 C14As1 ChlorA 0.753438
188 C14As1 C14As2 0.988701
197 C14As2 ChlorA 0.772853
86 ChlorA Phaeop 0.693789
8 Depthm SiO3uM 0.913041
1 Depthm O2ml_L -0.750968
2 Depthm STheta 0.521110
3 Depthm O2Sat -0.746203
7 Depthm PO4uM 0.796075
4 Depthm Oxymol -0.751041
56 O2Sat SiO3uM -0.927659
55 O2Sat PO4uM -0.991510
52 O2Sat Oxymol 0.994698
50 O2Sat STheta -0.830720
49 O2Sat O2ml_L 0.994579
24 O2ml_L SiO3uM -0.936703
23 O2ml_L PO4uM -0.983838
20 O2ml_L Oxymol 0.999999
18 O2ml_L STheta -0.917149
66 Oxymol STheta -0.917604
71 Oxymol PO4uM -0.983984
72 Oxymol SiO3uM -0.936599
114 PO4uM STheta 0.957313

7

120 PO4uM SiO3uM 0.945701
40 STheta SiO3uM 0.881600

Looking at the output of high multicolinearity, it makes sense. For example 𝑂2 Saturation has high
positive correlation with 𝑂2

𝑚𝑙
𝐿 which is just a different measure of the oxygen. In order to not

double count things, the whole list can be reduced to include features that make sense.

Note: For the first linear regression we perform using OLS, we will be using ALL features. The
Experimentation section will utilise a feature downsizing to determine the best feature subset to
improve performance.

4 Data Cleaning
Please clean the dataset. You can identify and substitute any missing data, normalize the features,
etc.

Pandas has enough tools to clean up the dataset as we see fit. I have also taken the liberty to
make functions that clean and split the dataset in this section. In order to experiment with feature
combinations in the future, I have followed a structure to:

• Substitute missing values with the mean

• Normalize the scale for each feature

• Divide the dataset according to year.

Since we are dealing with ALL the features for the first calculation of salinity prediction, we can
take the data subset as all features.

[]: alldata = df.copy() #making a copy to avoid errors in the future

We already know there are no categorical features to deal with, so no conversions will be necessary.

[]: alldata.isna().sum()

[]: Depthm 0
Salnty 3270
O2ml_L 26357
STheta 5510
O2Sat 26964
Oxymol 26970
ChlorA 116829
Phaeop 116832
PO4uM 35625
SiO3uM 34752
NO2uM 37090
NH3uM 260319
C14As1 310849
C14As2 310867
DarkAs 302632
LightP 306630

8

Year 0
dtype: int64

As we can see, there are a lot of missing datapoints.

While we could remove datapoints that have missing data in any feature, that would lead us to
way to small of a dataset in this situation. Therefore, the strategy for now is to take the mean of
the available data for that feature and substitute that into the empty spots.

Fortunately, Year does not have any missing datapoints, so data splitting will not be affected by
any cleaning and normalising actions.

The function below substitutes the missing data with the mean and also normalizes the data using
the StandardScaler fucntion from the scikit-learn library. The documentation is linked below. The
function uses the formula 𝑧 = 𝑥−𝜇

𝜎 to normalise. It is essentially providing the z-score normalisation.

Since I re-use the function in future sections, I have also added an option to work with a binarized
version of Salinity, that we use with logistic regression.

sklearn.preprocessing.StandardScaler

[]: from sklearn.preprocessing import StandardScaler
def clean_data_and_normalize(data_subset, logistic=False):

for column in data_subset.columns:
data_subset[column].fillna(data_subset[column].mean(), inplace=True)

if logistic == False:
if column!='Year' and column!='Salnty':

data_subset[[column]] = StandardScaler().
↪fit_transform(data_subset[[column]])

elif logistic == True:
if column!='Year' and column!='Salnty_binarized':

data_subset[[column]] = StandardScaler().
↪fit_transform(data_subset[[column]])

else:
print("SOMETHING HORRIBLE HAS GONE WRONG IN DATA CLEANING")

[]: clean_data_and_normalize(alldata)
alldata.isna().sum()

[]: Depthm 0
Salnty 0
O2ml_L 0
STheta 0
O2Sat 0
Oxymol 0
ChlorA 0
Phaeop 0
PO4uM 0
SiO3uM 0

9

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

NO2uM 0
NH3uM 0
C14As1 0
C14As2 0
DarkAs 0
LightP 0
Year 0
dtype: int64

After running the clean_data_and_normalize() function, we no longer have any missing data
points, as displayed in the above cell.

I have also provided a function below that splits the entered dataset into Xtrain, ⃗𝑦train, Xdev, ⃗𝑦dev,
Xtest, and ⃗𝑦test subsets for usage in future sections. The function also takes a binarized version of
Salinity, if being used in a logistic regression problem.

[]: def train_dev_test_split(dataset, logistic=False):
if logistic == False:

name = 'Salnty'
else: name = 'Salnty_binarized'

traindataset = dataset[(dataset['Year'] >= 1980) & (dataset['Year'] <=␣
↪2010)]

X_train = traindataset.drop([name, 'Year'], axis=1)
y_train = traindataset[name]

devdataset = dataset[(dataset['Year'] >= 2011) & (dataset['Year'] <= 2013)]
X_dev = devdataset.drop([name, 'Year'], axis=1)
y_dev = devdataset[name]

testdataset = dataset[(dataset['Year'] >= 2014) & (dataset['Year'] <= 2016)]
X_test = testdataset.drop([name, 'Year'], axis=1)
y_test = testdataset[name]

return X_train, y_train, X_dev, y_dev, X_test, y_test

Note: The order in which we normalise and split the data is important as that can affect the means.
So, some variance can occur due to the order of operations.

5 Predicting Salinity
The goal of this question is to predict water salinity using the considered biochemical features.
Implement a linear regression model using the ordinary least squares (OLS) solution. Report the
coefficient of determination 𝑅2, Pearson’s correlation 𝑟, and mean absolute error 𝑀𝐴𝐸 between
the actual and predicted salinity values on the development and testing sets.

10

5.1 Obtain the OLS solution
Since we already processed the alldata matrix in the previous step, we can go ahead and split the
data as shown below.

[]: X_train, y_train, X_dev, y_dev, X_test, y_test = train_dev_test_split(alldata)

The closed form OLS solution is calculated per the formula �⃗�∗ = (X⊺X)−1X⊺ ⃗𝑦.

We use the numpy library for calculating the weights as per the function below. Since the Xtrain
matrix is a pandas dataframe object, we frist convert it to a numpy matrix.

Then we add an array of ones in front of the current data set in order to convert X =
⎧{
⎨{⎩

x1
⊺

⋮
xN

⊺

⎫}
⎬}⎭

∈

ℝ𝑁train×𝐷 to X =
⎧{
⎨{⎩

1, x1
⊺

⋮
1, xN

⊺

⎫}
⎬}⎭

∈ ℝ𝑁train×𝐷+1

[]: def ols_weights(X_train, y_train):
#Convert X_train to numpy and make the data vertical
#initialise the vector of ones
ones = np.ones((X_train.shape[0], 1))
#use hstack to add the ones in front of the xdata
X_train_np = np.hstack((ones, X_train))

#make y a vertical vector
#-1 reshape to let numpy determine the number of rows based on length
y_train_np = y_train.to_numpy().reshape(-1,1)

#calculating weights using provided OLS formula
weights = np.linalg.pinv(X_train_np.T @ X_train_np) @ X_train_np.T @␣

↪y_train_np

return weights

After obtaining the vector of weights �⃗�∗, we can then calculate the predictions using the formula
⃗𝑦pred = �⃗�⊺X. This can be for either the development set or the testing set.

[]: #function to predict y values given the above weights using y = wT * X

def predict_y_values(X, weights):
#reshape input X
ones = np.ones((X.shape[0], 1))
X_np = np.hstack((ones, X))

#adjusted formula for the matrix shape I have after the manipulations
y_values = X_np @ weights

return y_values

11

y_pred_dev = predict_y_values(X_dev, ols_weights(X_train, y_train))
y_pred_test = predict_y_values(X_test, ols_weights(X_train, y_train))

5.2 Evaluate the OLS Solution
We are using three different metrics as per the instructions. The function below sets up model eval-
uations to compare ⃗𝑦pred to ⃗𝑦true. By comparing to the ground truth we can obtain an understanding
of how the model performs.

• 𝑅2 error: The 𝑅2 coefficient of determination is a statistical measure of how well the regression
predictions approximate the real data points. An 𝑅2 value of 1 means perfect correlation.
However, the value can range from −∞ to 1. To get a value less than 0, the performance
is horrible, and the residual sum of squares exceeds the total sum of squares in the formula
𝑅2 = 1 − 𝑆𝑆residual

𝑆𝑆total
. This page offers more details.

• Pearson correlation coefficient 𝑟: This can be calculated using the formula
∑𝑛

𝑖=1(𝑥𝑖−�̄�)(𝑦𝑖− ̄𝑦)
√∑𝑛

𝑖=1(𝑥𝑖−�̄�)2√∑𝑛
𝑖=1(𝑦𝑖− ̄𝑦)2

. The values can range from +1, meaning a perfect positive rela-

tionship, −1, meaning a perfect negative relationship. 0 means no relationship.

• Mean Absolute Error: This uses the formula ∑𝐷
𝑖=1 |𝑥𝑖 − 𝑦𝑖|. The values can range from 0 to

∞. The closer to 0, the better the evaluation.

The following functions are used for evaluation:

• sklearn.metrics.r2_score

• sklearn.metrics.mean_absolute_error

• scipy.stats.pearsonr

[]: #setting up for model evaluations
from sklearn.metrics import r2_score, mean_absolute_error
from scipy.stats import pearsonr

def model_evaluations(y_values, y_correct):
#uses the function directly
r_squared = r2_score(y_correct, y_values)

#need to flatten the array using ravel, can't be a vector
pearson_r, pval= pearsonr(y_correct.ravel(), y_values.ravel()) #returns a␣

↪tuple

#uses the function directly again
mae = mean_absolute_error(y_correct, y_values)

return r_squared, pearson_r, mae

[]: r_squared_dev, pearson_r_dev, mae_dev = model_evaluations(y_pred_dev, y_dev)

12

https://towardsdatascience.com/explaining-negative-r-squared-17894ca26321
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html#sklearn.metrics.mean_absolute_error
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html

print(f"Development Set\nR^2: {r_squared_dev},\nPearson's correlation r:␣
↪{pearson_r_dev},\nMean absolute Error: {mae_dev}")

Development Set
R^2: 0.9212452827273497,
Pearson's correlation r: 0.9625305308463652,
Mean absolute Error: 0.07112108497675049

[]: r_squared_test, pearson_r_test, mae_test = model_evaluations(y_pred_test,␣
↪y_test)

print(f"Test Set\nR^2: {r_squared_test},\nPearson's correlation r:␣
↪{pearson_r_test},\nMean absolute Error: {mae_test}")

Test Set
R^2: -16.923256511690877,
Pearson's correlation r: 0.20074852765442017,
Mean absolute Error: 0.11203710228175817

As we can see, the model fits greatly to the training data, and performs very well when compared
to the Development Set. However, it performs much worse in comparison to the Test Set. The only
thing we can estimate from this evaluation is that the model is too overfit to the training data, and
is not generalized enough for predicting from the test data.

We can make some changes in the Experimentation section to obtain a better model.

6 Discussion of predictions
Please discuss the estimated coefficients of the linear regression model. How might these findings
support stakeholders in making informed decisions? Furthermore, in what ways could this model
and its outcomes be utilized to educate the public?

We can observe the weights for each feature as shown in the output of the code cell below.

[]: weights = ols_weights(X_train, y_train)

features = np.vstack(np.insert(X_train.columns,0,['Bias']))

print(np.concatenate([weights,features], axis=1))

[['33.707570045014485' 'Bias']
['0.02054513470010297' 'Depthm']
['-0.2192437286854702' 'O2ml_L']
['0.6513113499660901' 'STheta']
['1.8879513474922087' 'O2Sat']
['-1.635575391441779' 'Oxymol']
['0.011837114801396875' 'ChlorA']
['0.0017997392465610319' 'Phaeop']
['0.08966291312584707' 'PO4uM']
['-0.14763261064069128' 'SiO3uM']
['-0.0020047924834751887' 'NO2uM']

13

['0.0026680631482935424' 'NH3uM']
['0.005705331767043302' 'C14As1']
['-0.006170660355563908' 'C14As2']
['0.004278788917914712' 'DarkAs']
['0.0018486154329883727' 'LightP']]

The largest weight is given to 𝑤0 which is the bias term as seen that it has a value of 33.7075.

𝑂2𝑆𝑎𝑡, 𝑂2𝜇𝑚𝑜𝑙/𝑘𝑔, 𝑆𝜃, 𝑂2𝑚𝑙/𝐿, and 𝑆𝑖𝑂3𝜇𝑀 have the next highest absolute weights at 1.8880,
1.63557, 0.6513, 0.2192, and, 0.1476 respectively. These values have absolute weights that are
much higher in comparison to the rest of the factors and thus affect the Salinity more, according
to the current model. Everything else has weights that are factors lower in comparison to these
main features. There is certainly some issue with giving more importance to the Oxygen related
features, as the model is probably becoming too dependent on it.
These higher absolute weight features relate to the features that have a high correlation to Salinity
from the section Data Exploration 1.

These findings can support stakeholders like environmental agencies and marine biologists because
the model’s insight provides info on the leading causes behind salinity. Stakeholders can effectively
change rules and regulations. They can also make informed decisions regarding climate change
assessments, conservation strategies, and marine management.

This model and the outcomes provided can help educate the public on what the leading causes
are behind conservation efforts. If the public can be convinced of the factors leading to harmful
effects on marine life (via salinity), people may be more willing to change their practices. As public
knowledge increases, so does the effort for conservation.

7 Experimenting
Based on your findings from questions (i) and (ii), experiment with different feature combinations
using linear and non-linear regression models. Please use the development data for hyper-parameter
tuning (i.e., to assess the feature selection and the linear/non-linear regression models) based on
the mean absolute error MAE between the actual and predicted salinity values. Please report and
discuss the MAE results from the experiments on the development data. Using the model that gave
the best MAE in the development data, please report the MAE on the test set.

7.1 Best feature combination
7.1.1 Choosing a smaller subset of features

We see from the above sections, that not every feature affects the weights equally. We also do
not want a situation where the model is overfit to the training data. One method, is to decrease
the number of features being used, so that even if the model performance on the development
dataset drops, the performance on the testing dataset is better. This would mean the model is
more generalized.

Seeing as we have a list of features that greatly affect salinity, let’s form a correlation matrix
heatmap with only those features. This will help us minimise redundant features that we use for
our calculations.

14

[]: feature_list = high_salnty_correlations['Feature'].tolist()
data_subset_high_corr = df[feature_list]

sns.heatmap(data_subset_high_corr.corr(method='pearson'), annot=True,␣
↪linewidth=.5, vmin=-1, vmax=1, center=0)

[]: <Axes: >

[]: mlcol_range = 0.8
show_unique_high_correlations(data_subset_high_corr.corr(method='pearson'),␣

↪mlcol_range)

FeatureA FeatureB Correlation
6 Depthm SiO3uM 0.913041
22 O2Sat O2ml_L 0.994579
23 O2Sat STheta -0.830720
25 O2Sat Oxymol 0.994698
26 O2Sat PO4uM -0.991510
27 O2Sat SiO3uM -0.927659
9 O2ml_L STheta -0.917149
11 O2ml_L Oxymol 0.999999

15

12 O2ml_L PO4uM -0.983838
13 O2ml_L SiO3uM -0.936703
30 Oxymol STheta -0.917604
33 Oxymol PO4uM -0.983984
34 Oxymol SiO3uM -0.936599
37 PO4uM STheta 0.957313
41 PO4uM SiO3uM 0.945701
20 STheta SiO3uM 0.881600

We are only going to keep certain features. O2Sat, O2ml_L, and O2micromol/Kg all measure
similar things. Only one is enough. Oxygen saturation is also highly correlated with PO4 and
SiO3, both molecules have oxygen in them. Perhaps Depth, Stheta, and Oxygen saturation are the
most unique ones that we should keep.

The function below will run a linear regression on the chosen features from the original dataset in
order to allow us experiment with a smaller subset of features.

[]: def run_linear_regression(df, features):
data = df[features].copy()

clean_data_and_normalize(data)

X_train, y_train, X_dev, y_dev, X_test, y_test = train_dev_test_split(data)

y_pred_dev = predict_y_values(X_dev, ols_weights(X_train, y_train))
y_pred_test = predict_y_values(X_test, ols_weights(X_train, y_train))

r_squared_dev, pearson_r_dev, mae_dev = model_evaluations(y_pred_dev, y_dev)
r_squared_test, pearson_r_test, mae_test = model_evaluations(y_pred_test,␣

↪y_test)

return r_squared_dev, pearson_r_dev, mae_dev, r_squared_test,␣
↪pearson_r_test, mae_test

Keeping only 𝐷𝑒𝑝𝑡ℎ, 𝑆𝜃, and 𝑂2𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, we can see the results below.

[]: feat = ['O2Sat','Depthm','STheta','Salnty','Year']

r_squared_dev, pearson_r_dev, mae_dev, r_squared_test, pearson_r_test, mae_test␣
↪= run_linear_regression(df,feat)

print(f"Development Set\nR^2: {r_squared_dev},\nPearson's correlation r:␣
↪{pearson_r_dev},\nMean absolute Error: {mae_dev}"

f"\n\nTest Set\nR^2: {r_squared_test},\nPearson's correlation r:␣
↪{pearson_r_test},\nMean absolute Error: {mae_test}")

Development Set
R^2: 0.837367152397408,
Pearson's correlation r: 0.9161641057411477,
Mean absolute Error: 0.11572734889066594

16

Test Set
R^2: -2.0465891460108363,
Pearson's correlation r: 0.4220623600585193,
Mean absolute Error: 0.14643089606216936

While the performance has improved, it can be even better. We can try removing 𝑆𝜃 from the
feature list as it only had a 0.63 correlation in section Data Exploration 1.

[]: feat = ['O2Sat','Depthm','Salnty','Year']

r_squared_dev, pearson_r_dev, mae_dev, r_squared_test, pearson_r_test, mae_test␣
↪= run_linear_regression(df,feat)

print(f"Development Set\nR^2: {r_squared_dev},\nPearson's correlation r:␣
↪{pearson_r_dev},\nMean absolute Error: {mae_dev}"

f"\n\nTest Set\nR^2: {r_squared_test},\nPearson's correlation r:␣
↪{pearson_r_test},\nMean absolute Error: {mae_test}")

Development Set
R^2: 0.8373961450235929,
Pearson's correlation r: 0.9178585155072176,
Mean absolute Error: 0.11747345125981559

Test Set
R^2: 0.8001572625059774,
Pearson's correlation r: 0.9063913118543812,
Mean absolute Error: 0.13610134143424152

Lowering the features down to just two, 𝑂2𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, and Depth makes a huge difference in the
performance of the model. While it no longer performs as well on the development set, we can say
the model is a lot more generalized as it has similar performance on both the development and
test datasets.

7.1.2 Confirming Hypothesis by iterating through options

While I would be satisfied with the performance of the model with the features being 𝑂2𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛,
and Depth, I still want to check if there is a better combination of features available. The function
below iterates through all different combinations I feed in to find the one that has the highest
performance to see if my hypothesis is correct or not.

Since we are obtaining the best performance for both the development and testing results, this
is not a regular procedure. This subsection and the code only exists to see how well the feature
selection above does is in comparison.

[]: from itertools import combinations
import numpy as np

def find_best_feature_combination_linear(df, all_features, max_features=None):
#need to drop year and salinity for iterations

17

features_to_consider = [feat for feat in all_features if feat not in␣
↪['Year', 'Salnty']]

best_r2 = -np.inf
best_combination = []
best_combo_result = None

if max_features is None:
max_features = len(features_to_consider)

for r in range(1, max_features + 1):
for feature_combination in combinations(features_to_consider, r):

totalList = list(feature_combination)
totalList.append('Year')
totalList.append('Salnty')

r_squared_dev, pearson_r_dev, mae_dev, r_squared_test,␣
↪pearson_r_test, mae_test = run_linear_regression(df, totalList)

if r_squared_test + r_squared_dev > best_r2:
best_r2 = r_squared_test + r_squared_dev
#simply just choosign the features that offer the best r^2
best_combination = feature_combination
best_combo_result = (r_squared_dev, pearson_r_dev, mae_dev,␣

↪r_squared_test, pearson_r_test, mae_test)

print(f"Best feature combination: {best_combination}\n"
f"Development set - R^2: {best_combo_result[0]}, Pearson's r:␣

↪{best_combo_result[1]}, MAE: {best_combo_result[2]}\n"
f"Test set - R^2: {best_combo_result[3]}, Pearson's r:␣

↪{best_combo_result[4]}, MAE: {best_combo_result[5]}")

[]: feat = ['O2Sat','Depthm','STheta','O2ml_L','Oxymol','PO4uM','SiO3uM']
find_best_feature_combination_linear(df, feat)

Best feature combination: ('O2Sat', 'Depthm', 'Oxymol', 'PO4uM')
Development set - R^2: 0.8600526444172428, Pearson's r: 0.9309933584366783, MAE:
0.11274012143574183
Test set - R^2: 0.8221373172608087, Pearson's r: 0.9238749577343719, MAE:
0.13115680915756742

Shockingly enough, from the limited subset of features, the best results were obtained by the
combination of 𝑂2𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝐷𝑒𝑝𝑡ℎ, 𝑂𝑥𝑦𝜇𝑀𝑜𝑙, and 𝑃𝑂4𝜇𝑀 . While this list does add two features
that I previously hypothesized to be redundant, it only performs better due to being a good fit
with the development set. I would still prefer the list that is more generalized with 𝑂2𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛
and 𝐷𝑒𝑝𝑡ℎ. We also notice that the performance is not significantly better in comparison to what
we obtained on the limited dataset.

18

For the development dataset, the improvement in 𝑅2 from 0.84 to 0.86 exists, but the more
generalized model can be argued to be better.
Similarly, for the test dataset, the improvement in 𝑅2 was only from 0.80 to 0.82.

7.2 Regularization and Non-Linear Regression
We can try another method to obtain better performance, which is regularization. Instead of using
manual feature choices according to correlation and multicollinearity, we can change the strength
of the weights to obtain the best performance.

The code cell below sets up the data normalisation and splits to be used in further steps.

[]: featlist = df.columns.to_list()
df_exp = df[featlist].copy()

clean_data_and_normalize(df_exp)

X_train, y_train, X_dev, y_dev, X_test, y_test = train_dev_test_split(df_exp)

7.2.1 L2 Regularization

I have used multiple external libraries for this portion.

sklearn.linear_model.Ridge is a linear regression model that takes in a hyperparameter 𝛼 and per-
forms a regression model where the loss function is the linear least squares function. Regularization
is provided by the l2-norm.

sklearn.model_selection.GridSearchCV provides a simple way to do repetitive hyperparameter tun-
ing without manual for loops on my part. It simply takes in a grid of parameters, a method, and
the way to score performance, to return the best output. Finally, we can fit our data to that output
in order to get a performance evaluation.

[]: from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import Ridge #uses l2 reg

param_grid = {'alpha': [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]}

#the manual states the string 'neg_mean_absolute_error' is the way to get MAE
grid_search = GridSearchCV(Ridge(), param_grid,␣

↪scoring='neg_mean_absolute_error')

grid_search.fit(X_train, y_train)

print("Best alpha for l2 regularization:", grid_search.best_params_)

best_model_l2 = grid_search.best_estimator_
mae_dev_l2 = -grid_search.score(X_dev, y_dev)
print("MAE on development set with l2 regularization:", mae_dev_l2)

19

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

Best alpha for l2 regularization: {'alpha': 10.0}
MAE on development set with l2 regularization: 0.07143459924388597

7.2.2 L1 Regularization

Similar to l2 regularization, I have used external libraries for this portion.
sklearn.linear_model.Lasso is also a linear regression model, but the loss function is different from
l-2. The hyperparameter to be tuned is still 𝛼. I have also increased the maximum number of
iterations from a default of 1,000 to 10,000 in order for it to converge, as I was getting warnings
otherwise.

[]: from sklearn.linear_model import Lasso #l1 regularization

param_grid = {'alpha': [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]}

grid_search = GridSearchCV(Lasso(max_iter=10000), param_grid,␣
↪scoring='neg_mean_absolute_error')

grid_search.fit(X_train, y_train)

print("Best alpha for l1 regularization:", grid_search.best_params_)

best_model_l1 = grid_search.best_estimator_
mae_dev_l1 = -grid_search.score(X_dev, y_dev)
print("MAE on development set with l1 regularization:", mae_dev_l1)

Best alpha for l1 regularization: {'alpha': 0.001}
MAE on development set with l1 regularization: 0.07883076521041436

7.2.3 Non-Linear Regression with L2 Regularization

Seeing the results in the previous subsections, L2 regularization performs a bit better and also
converges faster. Therefore, we will be using the function Ridge() after the polynomial conversion.

sklearn.preprocessing.PolynomialFeatures allows us to transform the input vector and get polyno-
mials as the output in terms of degrees. For example, if the input had [𝑥1, 𝑥2], then the output
provided would have [1, 𝑥1, 𝑥2, 𝑥2

1, 𝑥2
2, 𝑥1𝑥2]. It has the hyper-parameter input as degree which

determines how much the polynomials will change.

sklearn.pipeline.Pipeline then combines the transformed output from the PolynomialFeatures()
function and allows us to evaluate it using regular L2 regression. This still has the same hyper-
parameter 𝛼 as before.

If all available features are to be used for the PolynomialFeatures() function, we end up having
too many computations to perform. So, the total list has to be cut down first. For the sake of
simplicity, we can just use 𝑂2𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 and 𝐷𝑒𝑝𝑡ℎ for our features. Polynomial is also prone to
easily overfitting from the experimentation that I have done, so the more generalized, the better.

[]: #Same as above, just cutting down on total features to save time in the␣
↪polynomial portion

feat = ['O2Sat','Depthm','Salnty','Year']

20

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

df_polynomial = df[feat].copy()
clean_data_and_normalize(df_polynomial)
X_train_p, y_train_p, X_dev_p, y_dev_p, X_test_p, y_test_p =␣

↪train_dev_test_split(df_polynomial)

[]: from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

pipeline = make_pipeline(PolynomialFeatures(), Ridge()) #transformer and␣
↪estimator

#the grid allows us to try many different combinations
param_grid = {

'polynomialfeatures__degree': [2, 3, 4],
'ridge__alpha': [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]

}

grid_search = GridSearchCV(pipeline, param_grid,␣
↪scoring='neg_mean_absolute_error')

grid_search.fit(X_train_p, y_train_p)

print("Best parameters:", grid_search.best_params_)

best_model_poly = grid_search.best_estimator_
mae_dev_poly = -grid_search.score(X_dev_p, y_dev_p)
print("Development set MAE with Polynomial Regression:", mae_dev_poly)

Best parameters: {'polynomialfeatures__degree': 4, 'ridge__alpha': 0.001}
Development set MAE with Polynomial Regression: 0.09708409447499868

7.3 Using Best Model on Test Set
We see in the above sections that the best performance on the development set was provided by the
model obtained in l-2 regularization. In the interest of time and avoiding overfitting to the data, I
will not be performing more experiments on the hyperparameters.

[]: y_pred = best_model_l2.predict(X_test)

mae_test = mean_absolute_error(y_test, y_pred)

print(f"Test set MAE with best model: {mae_test}")

Test set MAE with best model: 0.11208105130258542

21

8 Logistic Regression
Use the sample mean of the salinity outcome to binarize the data (i.e., assign samples with salinity
larger than the mean to class 1 and samples with salinity lower than the mean to class -1). Run
a logistic regression algorithm to classify between class 1 and -1. Use the development data for
hyper-parameter tuning (i.e., to determine the regularization strength, regularization penalty term,
etc.) based on the classification accuracy metric. After hyper-parameter tuning, report the accuracy
of the classifier on the test data using the best combination that resulted from the development data.

We are going to use sklearn.linear_model.LogisticRegression in this section. It uses multiple penal-
ties or regressions. The regularization strength from the equation for logistic regression is here as
C, which is the inverse of the regularization strength. The solver being used here is liblenear due
to us trying both l1 and l2 norm for penalties, and the manual page states that the choice of the
algorithm depends on the penalty being chosen. It also helps that liblenear is recommended for
small to medium datasets.

[]: from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score

We can binarize the dataset as per the code cell below. We create a new column, and if the Salinity
there is greater than the mean, we make it +1, otherwise we make it -1.

[]: mean_salnty = df['Salnty'].mean()
df_logistic = df.copy()
df_logistic['Salnty_binarized'] = np.where(df_logistic['Salnty'] > mean_salnty,␣

↪1, -1)

The cell below normalizes the dataset, and splits it accordingly.

[]: feature_list =␣
↪['Year','O2Sat','Depthm','STheta','O2ml_L','Oxymol','PO4uM','SiO3uM','Salnty_binarized']

data_sub = df_logistic[feature_list].copy()

clean_data_and_normalize(data_sub, logistic=True)
X_train, y_train, X_dev, y_dev, X_test, y_test = train_dev_test_split(data_sub,␣

↪logistic=True)

The cell below performs hyper-parameter tuning, with C being evenly spaced on the scale from
10−4 to 104. It takes quite a bit of time using all the features that heavily affect salinity. We can
cut down the run time by simply lowering the number of features.

[]: param_grid = {
'C': np.logspace(-4, 4, 20),
'penalty': ['l1', 'l2'],
'solver': ['liblinear']

}

logreg = LogisticRegression()# no parameter changes necessary from default
grid_search = GridSearchCV(logreg, param_grid, scoring='accuracy')

22

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

grid_search.fit(X_train, y_train)

print("Best hyper-parameters:", grid_search.best_params_)

Best hyper-parameters: {'C': 206.913808111479, 'penalty': 'l2', 'solver':
'liblinear'}

The cells below show the performance of the model on both the validation set and the final test
set.

[]: best_logistic_model = LogisticRegression(**grid_search.best_params_)

best_logistic_model.fit(X_train, y_train)

y_pred_dev = best_logistic_model.predict(X_dev)
dev_acc = accuracy_score(y_dev, y_pred_dev)

print("Development set accuracy with best hyperparameters:", dev_acc)

Development set accuracy with best hyperparameters: 0.9756027080581242

[]: y_pred_test = best_logistic_model.predict(X_test)
test_acc = accuracy_score(y_test, y_pred_test)

print("Test set accuracy with best hyperparameters:", test_acc)

Test set accuracy with best hyperparameters: 0.9824329510083998

Given the accuracy of the model on both the development dataset and the test dataset, we can say
that the performance of the model is great. More time for experimentation would be needed to
get a higher accuracy score. Interestingly, the model performed better on the test set, but I would
argue that the changes are negligible.

23

	Library and data import
	Data Exploration 1
	Plotting all Features and Correlations
	High Correlation Features against Salinity

	Data Exploration 2
	Heatmap for all features
	High Multicollinearity between features

	Data Cleaning
	Predicting Salinity
	Obtain the OLS solution
	Evaluate the OLS Solution

	Discussion of predictions
	Experimenting
	Best feature combination
	Choosing a smaller subset of features
	Confirming Hypothesis by iterating through options

	Regularization and Non-Linear Regression
	L2 Regularization
	L1 Regularization
	Non-Linear Regression with L2 Regularization

	Using Best Model on Test Set

	Logistic Regression

